Voltage-gated sodium channels shape subthreshold EPSPs in layer 5 pyramidal neurons from rat prefrontal cortex.
نویسندگان
چکیده
The role of voltage-dependent channels in shaping subthreshold excitatory postsynaptic potentials (EPSPs) in neocortical layer 5 pyramidal neurons from rat medial prefrontal cortex (PFC) was investigated using patch-clamp recordings from visually identified neurons in brain slices. Small-amplitude EPSPs evoked by stimulation of superficial layers were not affected by the N-methyl-D-aspartate receptor antagonist D-2-amino-5-phosphonopentanoic acid but were abolished by the AMPA receptor antagonist 6-cyano-7-nitroquinoxalene-2,3-dione, suggesting that they were primarily mediated by AMPA receptors. AMPA receptor-mediated EPSPs (AMPA-EPSPs) evoked in the apical dendrites were markedly enhanced, or increased in peak and duration, at depolarized holding potentials. Enhancement of AMPA-EPSPs was reduced by loading the cells with lidocaine N-ethylbromide (QX-314) and by local application of the Na(+) channel blocker tetrodotoxin (TTX) to the soma but not to the middle/proximal apical dendrite. In contrast, blockade of Ca(2+) channels by co-application of Cd(2+) and Ni(2+) to the soma or apical dendrite did not affect the AMPA-EPSPs. Like single EPSPs, EPSP trains were shaped by Na(+) but not Ca(2+) channels. EPSPs simulated by injecting synaptic-like current into proximal/middle apical dendrite (simEPSPs) were enhanced at depolarized holding potentials similarly to AMPA-EPSPs. Extensive blockade of Ca(2+) channels by bath application of the Cd(2+) and Ni(2+) mixture had no effects on simEPSPs, whereas bath-applied TTX removed the depolarization-dependent EPSP amplification. Inhibition of K(+) currents by 4-aminopyridine (4-AP) and TEA increased the TTX-sensitive EPSP amplification. Moreover, strong inhibition of K(+) currents by high concentrations of 4-AP and TEA revealed a contribution of Ca(2+) channels to EPSPs that, however, seemed to be dependent on Na(+) channel activation. Our results indicate that in layer 5 pyramidal neurons from PFC, Na(+), and K(+) voltage-gated channels shape EPSPs within the voltage range that is subthreshold for somatic action potentials.
منابع مشابه
Activation of Ih and TTX-sensitive sodium current at subthreshold voltages during CA1 pyramidal neuron firing.
We used dynamic clamp and action potential clamp techniques to explore how currents carried by tetrodotoxin-sensitive sodium channels and HCN channels (Ih) regulate the behavior of CA1 pyramidal neurons at resting and subthreshold voltages. Recording from rat CA1 pyramidal neurons in hippocampal slices, we found that the apparent input resistance and membrane time constant were strongly affecte...
متن کاملImpact of subthreshold membrane potential on synaptic responses at dendritic spines of layer 5 pyramidal neurons in the prefrontal cortex.
Glutamatergic inputs onto cortical pyramidal neurons are received and initially processed at dendritic spines. AMPA and NMDA receptors generate both synaptic potentials and calcium (Ca) signals in the spine head. These responses can in turn activate a variety of Ca, sodium (Na), and potassium (K) channels at spines. In principle, the roles of these receptors and channels can be strongly regulat...
متن کاملAction potential initiation and propagation in layer 5 pyramidal neurons of the rat prefrontal cortex: absence of dopamine modulation.
Somatic and dendritic whole-cell recording was used to examine action potential (AP) initiation and propagation in layer 5 pyramidal neurons of the rat prelimbic prefrontal cortex. APs generated by somatic current injection, or via antidromic stimulation, were reliably recorded at apical dendritic locations as far as 480 microm from the soma. Although the backpropagation of single APs into the ...
متن کاملProperties of excitatory synaptic responses in fast-spiking interneurons and pyramidal cells from monkey and rat prefrontal cortex.
In the prefrontal cortex (PFC) during working memory tasks fast-spiking (FS) interneurons might shape the spatial selectivity of pyramidal cell firing. In order to provide time control of pyramidal cell activity, incoming excitatory inputs should excite FS interneurons more vigorously than pyramidal cells. This can be achieved if subthreshold excitatory responses of interneurons are considerabl...
متن کاملSite independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons.
Neocortical layer 5 pyramidal neurons possess long apical dendrites that receive a significant portion of the neurons excitatory synaptic input. Passive neuronal models indicate that the time course of excitatory postsynaptic potentials (EPSPs) generated in the apical dendrite will be prolonged as they propagate toward the soma. EPSP propagation may, however, be influenced by the recruitment of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 86 4 شماره
صفحات -
تاریخ انتشار 2001